Question
12. Complete the table by calculating the missing values material & energy transfer & mass & temperature rise & specific heat capacity A & & 4 mathrm(~kg) & 6^circ mathrm(C) & 4000 mathrm(~J) / mathrm(kg)^circ mathrm(C) B & 6000 mathrm(~J) & 1 mathrm(~kg) & & 2000 mathrm(~J) / mathrm(kg)^circ mathrm(C) C & 8000 mathrm(~J) & & 4^circ mathrm(C) & 1000 mathrm(~J) / mathrm(kg)^circ mathrm(C) D & & 12 mathrm(~kg) & 24^circ mathrm(C) & 500 mathrm(~J) / mathrm(kg)^circ mathrm(C) E & 2500 mathrm(~J) & 2 mathrm(~kg) & 5^circ mathrm(C) &
Answer
4.4
(284 Votes)
Llinos
Professional · Tutor for 6 years
Answer
The question is asking to complete the table by calculating the missing values. The table has five columns: material, energy transfer, mass, temperature rise, and specific heat capacity. The energy transfer can be calculated using the formula Q=mcΔT, where Q is the energy, m is the mass, c is the specific heat, and ΔT is the temperature change.For material A, the energy transfer is missing. We can calculate it using the formula Q=mcΔT. Here, the mass (m) is 4 kg, the temperature rise (ΔT) is 6°C, and the specific heat capacity (c) is 4000 J/kg°C. Substituting these into the formula, we get Q=(4 kg)(6°C)(4000 J/kg°C)=96,000 J.For material B, the temperature rise is missing. We can calculate it using the formula ΔT=Q/(mc). Here, the energy transfer (Q) is 6000 J, the mass (m) is 1 kg, and the specific heat capacity (c) is 2000 J/kg°C. Substituting these into the formula, we get ΔT=(6000 J)/(1 kg)(2000 J/kg°C)=3°C.For material C, the mass is missing. We can calculate it using the formula m=Q/(cΔT). Here, the energy transfer (Q) is 8000 J, the temperature rise (ΔT) is 4°C, and the specific heat capacity (c) is 1000 J/kg°C. Substituting these into the formula, we get m=(8000 J)/(1000 J/kg°C)(4°C)=2 kg.For material D, the energy transfer is missing. We can calculate it using the formula Q=mcΔT. Here, the mass (m) is 12 kg, the temperature rise (ΔT) is 24°C, and the specific heat capacity (c) is 500 J/kg°C. Substituting these into the formula, we get Q=(12 kg)(24°C)(500 J/kg°C)=144,000 J.For material E, the specific heat capacity is missing. We can calculate it using the formula c=Q/(mΔT). Here, the energy transfer (Q) is 2500 J, the mass (m) is 2 kg, and the temperature rise (ΔT) is 5°C. Substituting these into the formula, we get c=(2500 J)/(2 kg)(5°C)=250 J/kg°C.So, the completed table is:\begin{array}{|c|c|c|c|c|}\hline\ material\ &\ energy\ transfer\ &\ mass\ &\ temperature\ rise\ &\ specific\ heat\ capacity\ \\\hline\ A\ &\ 96,000\ J\ &\ 4\ kg\ &\ 6°C\ &\ 4000\ J/kg°C\ \\\hline\ B\ &\ 6000\ J\ &\ 1\ kg\ &\ 3°C\ &\ 2000\ J/kg°C\ \\\hline\ C\ &\ 8000\ J\ &\ 2\ kg\ &\ 4°C\ &\ 1000\ J/kg°C\ \\\hline\ D\ &\ 144,000\ J\ &\ 12\ kg\ &\ 24°C\ &\ 500\ J/kg°C\ \\\hline\ E\ &\ 2500\ J\ &\ 2\ kg\ &\ 5°C\ &\ 250\ J/kg°C\ \\\hline\end{array}