Home
/
Math
/
A spinner has two coloured sections. Natasha and Jonah each spun the spinner a number of times and recorded how many times it landed on each colour in the table below. a) Work out the estimated probability of the spinner landing on white using i)Natasha's results. ii)Jonah's results. Give each of your answers as a fraction in its simplest form. b)Which person's results give a better estimate for the probability? Write a sentence to explain your

Question

A spinner has two coloured sections.
Natasha and Jonah each spun the
spinner a number of times and
recorded how many times it landed
on each colour in the table below.
a) Work out the estimated probability
of the spinner landing on white using
i)Natasha's results.
ii)Jonah's results.
Give each of your answers as a
fraction in its simplest form.
b)Which person's results give a
better estimate for the probability?
Write a sentence to explain your

A spinner has two coloured sections. Natasha and Jonah each spun the spinner a number of times and recorded how many times it landed on each colour in the table below. a) Work out the estimated probability of the spinner landing on white using i)Natasha's results. ii)Jonah's results. Give each of your answers as a fraction in its simplest form. b)Which person's results give a better estimate for the probability? Write a sentence to explain your

expert verifiedVerification of experts

Answer

4.6368 Voting
avatar
FaithMaster · Tutor for 5 years

Answer

Here is everything I've gathered.<br />a)<br />* (a.i) Natasha's results simple fraction the spinner will land on white section is \(probability\_white\_natasha\).<br />* (a.ii) Jonah's results simple fraction the spinner will land on white section is \(probability\_white\_jonah\).<br />b) \(person\) offers the better estimation for the probability because her/his estimated probability is closer to 0.5 which is what should be observed for a perfectly balanced spinner.

Explain

## Step 1:<br />First, let us work out the total number of spins each person did. To do this, we need to add the number of times it landed on the white section to the number of times it landed on the green section for each person.<br /><br />## Natasha: <br />### \(total = white\_natasha + green\_natasha\)<br /><br />## Jonah: <br />### \(total = white\_jonah + green\_jonah\)<br /><br />## Step 2:<br />Next, for each of the two sets, look for the estimated probability of a white landing.<br />To calculate this, divide the number of white landings by the respective totals we found in step 1, for each of Natasha and Jonah, respectively.<br /><br />### \(probability\_white\_natasha = frac{ white\_natasha }{ total\_natasha }\)<br />### \(probability\_white\_jonah = frac{ white\_jonah }{ total\_jonah }\)<br /><br />## Step 3:<br />Lastly, we need to compare both probabilities to conclude who gives a better estimation for landing on the white section.<br />The probability closer to 0.5 means it is more likely for a balanced spinner.
Click to rate: