Home
/
English
/
(b) By using your answer in part (a) andgiyen that 2CD=3AB , find the value ofy. 2y=3x-1 x+y=30 y=(3x)/(2)-(2) x+(3x)/(2)=303x^(2) 2x+3x=60 5x=60 x=12 y=(3(12))/(2) 18cm Answer y= qquad =18% 4 Solve the following simultaneous equations. 2y=x-4"-(1) " 2y=x-4 2x=3-y ],[2y=x-4-(1)],[y=3-2x-(2)],[y=3-2(2)],[2(3-2x)=x-4],[=-111],[6-4x=x-44],[10=5x],[5x=10],[x=2" 11 " Answer x=dots dots dots,y=dots dots dots dots[3]

Question

(b) By using your answer in part (a) andgiyen that 2CD=3AB , find the value ofy.  2y=3x-1 x+y=30 y=(3x)/(2)-(2)   x+(3x)/(2)=303x^(2) 2x+3x=60   5x=60 x=12 y=(3(12))/(2)  18cm Answer y= qquad =18% 4 Solve the following simultaneous equations.  2y=x-4"-(1) "  2y=x-4 2x=3-y ],[2y=x-4-(1)],[y=3-2x-(2)],[y=3-2(2)],[2(3-2x)=x-4],[=-111],[6-4x=x-44],[10=5x],[5x=10],[x=2" 11 "  Answer x=dots dots dots,y=dots dots dots dots[3]

(b) By using your answer in part (a) andgiyen that 2CD=3AB , find the value ofy. 2y=3x-1 x+y=30 y=(3x)/(2)-(2) x+(3x)/(2)=303x^(2) 2x+3x=60 5x=60 x=12 y=(3(12))/(2) 18cm Answer y= qquad =18% 4 Solve the following simultaneous equations. 2y=x-4"-(1) " 2y=x-4 2x=3-y ],[2y=x-4-(1)],[y=3-2x-(2)],[y=3-2(2)],[2(3-2x)=x-4],[=-111],[6-4x=x-44],[10=5x],[5x=10],[x=2" 11 " Answer x=dots dots dots,y=dots dots dots dots[3]

expert verifiedVerification of experts

Answer

4.5219 Voting
avatar
ErnestElite · Tutor for 8 years

Answer

<p> 1. y=18 cm 2. x=2, y=-1</p>

Explain

<p></p><br /><p>1. Given the equations:</p><br /><p>\(2y = 3x - 1\)</p><br /><p>\(x + y = 30\)</p><br /><p>From the provided solution:</p><br /><p>\(x + \frac{3x}{2} = 30\)</p><br /><p>\(5x = 60\)</p><br /><p>\(x = 12\)</p><br /><p>Substituting the value of \(x\) into the first equation:</p><br /><p>\(y = \frac{3(12)}{2}\)</p><br /><p>\(y = 18\)</p><br /><p>Thus, \(y = 18\) cm.</p><br /><br /><p>2. Given the equations:</p><br /><p>\(2y - x - 4 = -1\)</p><br /><p>\(y = 3 - 2x - 2\)</p><br /><p>From the provided solution:</p><br /><p>\(2(3 - 2x) = x - 4\)</p><br /><p>\(6 - 4x = x - 4\)</p><br /><p>\(5x = 10\)</p><br /><p>\(x = 2\)</p><br /><p>Substituting the value of \(x\) into the second equation:</p><br /><p>\(y = 3 - 2(2)\)</p><br /><p>\(y = -1\)</p><br /><p>Thus, \(x = 2\) and \(y = -1\).</p>
Click to rate:

Hot Questions

More x