Home
/
Chemistry
/
Method 2 - Displacement (d) The chemical equation for the displacement of copper using iron is: CuSO_(4)+Fearrow Cu+FeSO_(4) Calculate the minimum mass of iron needed to displace all of the copper from 50cm^3 of copper(II) sulfate solution. The concentration of the copper(II) sulfate solution is 80 g CuSO_(4) per dm^3 Relative atomic masses (A_(r)):O=16;S=32;Fe=56;Cu=63.5 Give your answer to 2 significant figures. Mass of iron=1.4g_(9)

Question

Method 2 - Displacement
(d) The chemical equation for the displacement of copper using iron is:
CuSO_(4)+Fearrow Cu+FeSO_(4)
Calculate the minimum mass of iron needed to displace all of the copper from 50cm^3 of
copper(II) sulfate solution.
The concentration of the copper(II) sulfate solution is 80 g CuSO_(4) per dm^3
Relative atomic masses (A_(r)):O=16;S=32;Fe=56;Cu=63.5
Give your answer to 2 significant figures.
Mass of iron=1.4g_(9)

Method 2 - Displacement (d) The chemical equation for the displacement of copper using iron is: CuSO_(4)+Fearrow Cu+FeSO_(4) Calculate the minimum mass of iron needed to displace all of the copper from 50cm^3 of copper(II) sulfate solution. The concentration of the copper(II) sulfate solution is 80 g CuSO_(4) per dm^3 Relative atomic masses (A_(r)):O=16;S=32;Fe=56;Cu=63.5 Give your answer to 2 significant figures. Mass of iron=1.4g_(9)

expert verifiedVerification of experts

Answer

4.0211 Voting
avatar
WrenMaster · Tutor for 5 years

Answer

<p> 37 grams (to 2 s.f).</p>

Explain

<p> For the reaction \(\mathrm{CuSO}_{4}+\mathrm{Fe} \rightarrow \mathrm{Cu}+\mathrm{FeSO}_{4}\), using stoichiometric calculations we will find that every 1 moles of \( \mathrm{CuSO}_{4} \) consume 1 mole of \( \mathrm{Fe} \). <br />So, to calculate the mass of iron we need to figure out the number moles of \( \mathrm{CuSO}_{4} \), then calculate the mass of \( \mathrm{Fe} \).<br /><br />Step1: Calculate the concentration of \( \mathrm{CuSO}_{4} \) in \( \mathrm{gdm}^{-3} \) to \( \mathrm{gcm}^{-3} \):<br />\( \mathrm{gcm}^{-3} = \frac{80 }{1000} \) <br /><br />Then, Find the mass of \( \mathrm{CuSO}_{4} \) in \( 50 \mathrm{cm}^{3} \):<br />\( \mathrm{Mass} = \mathrm{concentration} \times \mathrm{volume} = 0.08 \times 50 \) <br /><br />Step 2: Find the molar mass of \( \mathrm{CuSO}_{4} \) : <br />\( M_{\mathrm{CuSO}_{4}} = 63.5 (for \, Cu) + 32 (for \, s) + (16 \times 4)(for \, O)=\mathrm{Molar} \, \mathrm{mass \, of} \, \mathrm{CuSO}_{4} \) <br /><br />Then , Find the number of moles of \( \mathrm{CuSO}_{4} \) : <br />\( Moles= \frac{Mass}{Molar Mass} = \frac{(0.08 \times 50)}{(63.5+32+16*4)} \) <br /><br />Step 3: Find the mass of \( \mathrm{Fe} \):<br />As we calculated before in stoichiometric relation , the numberof moles of \( \mathrm{Fe} \) = number of moles of \( \mathrm{CuSO}_{4} \) . so we recalculate : <br />\( Mass+\mathrm{Fe} = moles_{(\mathrm{Fe So_{4})} \times M_{\mathrm{Fe}} \) </p>
Click to rate:

Hot Questions

More x