Home
/
Math
/
Let S be the set of all non-zero real numbers such that the quadratic equation alpha x^2-x+alpha =0 has two distinct real roots x_1  and x_2  satisfying the inequality |x_1-x_2|lt 1.  Which of the following intervals is(are) a subset(s) of S) ( ) A . (-frac 1 2,-frac 1(sqrt 5)) B . (-frac 1(sqrt 5),0) C . (0,frac 1(sqrt 5)) D . (frac 1(sqrt 5),frac 1 2)

Question

Let S be the set of all non-zero real numbers such that the quadratic equation alpha x^2-x+alpha =0 has two distinct real roots x_1  and x_2  satisfying the inequality |x_1-x_2|lt 1.  Which of the following intervals is(are) a subset(s) of S) ( ) A . (-frac 1 2,-frac 1(sqrt 5)) B . (-frac 1(sqrt 5),0) C . (0,frac 1(sqrt 5)) D . (frac 1(sqrt 5),frac 1 2)

expert verifiedVerification of experts

Answer

4.2136 Voting
avatar
CarysProfessional · Tutor for 6 years

Answer

<div class="c2h-answers"><span class="c2h-answer-order"></span><span class="c2h-answer-content"><span class="c2h-answer">AD </span></span><div class="c2h-hint"><span class="c2h-order-label"></span><span class="c2h-detail"> $\left|x_1-x_2\right|\lt 1$ <br /> ${\therefore}\left(x_1+x_2\right)^2-4x_1x_2\lt 1$ <br /> $\Rightarrow \frac 1{\alpha ^2}-4\lt 1$ <br /> $\Rightarrow 5-\frac 1{\alpha ^2}\gt 0$ <br/>$\Rightarrow 5\gt \frac{1}{\alpha ^2}$<br/>Take the square root on both sides. <br/>$\Rightarrow\sqrt{5}\gt \left|\frac{1}{\alpha}\right|$<br/>$\Rightarrow \sqrt{5}\gt \frac{1}{\left|\alpha \right|}$<br/>$\Rightarrow\left|\alpha\right|\gt \frac{1}{\sqrt{5}}$<br/>$\Rightarrow -\frac{1}{\sqrt{5}}\gt \alpha \gt \frac{1}{\sqrt{5}}$<br/>$\Rightarrow -\frac{1}{\sqrt{5}}\gt \alpha ,\alpha \gt \frac{1}{\sqrt{5}}$Eq$1$<br/>Also $D\gt 0$ <br /> ${\therefore}1-4\alpha ^2\gt 0$ <br /> ${\therefore}\alpha {\in}\left(-\frac 1 2,\frac 1 2\right)$Eq$2$ <br />From ( 1 ) and ( 2 )<br/>$\alpha \in\left(-\frac{1}{2},-\frac{1}{\sqrt{5}}\right) \cup\left(\frac{1}{\sqrt{5}}, \frac{1}{{2}}\right)$<br/>The options A and D are correct.</span>
Click to rate:

Hot Questions

More x