Home
/
Math
/
Find 3 f^-1(0)+g^-1(-18) x & f(x) & g(x) 4 & -18 & -19 0 & 18 & -18 -20 & 4 &.15 13 & 12 & 17 5 & 0 & -20 -11 & 17 & -3 8 & -15 & 19

Question

Find 3 f^-1(0)+g^-1(-18) 

 x & f(x) & g(x) 
 4 & -18 & -19 
 0 & 18 & -18 
-20 & 4 &.15 
 13 & 12 & 17 
 5 & 0 & -20 
-11 & 17 & -3 
 8 & -15 & 19

Find 3 f^-1(0)+g^-1(-18) x & f(x) & g(x) 4 & -18 & -19 0 & 18 & -18 -20 & 4 &.15 13 & 12 & 17 5 & 0 & -20 -11 & 17 & -3 8 & -15 & 19

expert verifiedVerification of experts

Answer

4.5227 Voting
avatar
MarnieAdvanced · Tutor for 1 years

Answer

# Explanation<br />To solve this problem, we first need to understand what \(f^{-1}(x)\) and \(g^{-1}(x)\) mean. These are the inverse functions of \(f(x)\) and \(g(x)\), respectively. When we say \(f^{-1}(0)\), we are looking for the value of \(x\) such that \(f(x) = 0\). Similarly, \(g^{-1}(-18)\) means we are looking for the value of \(x\) such that \(g(x) = -18\).<br /><br />Looking at the table, we can see that \(f(5) = 0\), so \(f^{-1}(0) = 5\). Similarly, \(g(0) = -18\), so \(g^{-1}(-18) = 0\).<br /><br /># Answer<br />Substituting these values into the original equation, we get:<br /><br />\[3f^{-1}(0) + g^{-1}(-18) = 3*5 + 0 = 15\]
Click to rate:

Hot Questions

More x