Home
/
Physics
/
5. An FM radio station broadcasts electromagnetic waves at a frequency of 94.5MHz (equal to 94,500,000Hz These radio waves have a wavelength of 3.17 meters. What is the speed of the waves? square square square square

Question

5. An FM radio station broadcasts electromagnetic waves at a frequency of
94.5MHz (equal to 94,500,000Hz These radio waves have a wavelength of 3.17 meters. What is the speed of the waves?
square 
square 
square 
square

5. An FM radio station broadcasts electromagnetic waves at a frequency of 94.5MHz (equal to 94,500,000Hz These radio waves have a wavelength of 3.17 meters. What is the speed of the waves? square square square square

expert verifiedVerification of experts

Answer

4.7169 Voting
avatar
EllisElite · Tutor for 8 years

Answer

### The speed of the electromagnetic waves is \( 299,865,000 \mathrm{m/s} \).

Explain

## Step 1: Understand the Given Values<br />### The frequency \( f \) of the FM radio station is \( 94.5 \mathrm{MHz} \) or \( 94,500,000 \mathrm{Hz} \). The wavelength \( \lambda \) of the radio waves is \( 3.17 \mathrm{meters} \).<br /><br />## Step 2: Recall the Wave Speed Formula<br />### The speed \( v \) of a wave is given by the product of its frequency \( f \) and its wavelength \( \lambda \): \( v = f \cdot \lambda \).<br /><br />## Step 3: Insert Given Values into the Formula<br />### Substitute \( f = 94,500,000 \mathrm{Hz} \) and \( \lambda = 3.17 \mathrm{meters} \) into the wave speed formula: <br />\[ v = 94,500,000 \mathrm{Hz} \times 3.17 \mathrm{meters} \]<br /><br />## Step 4: Solve for Speed \( v \)<br />### Calculate the product:<br />\[ v = 299,865,000 \mathrm{m/s} \]
Click to rate:

Hot Questions

More x