Home
/
Physics
/
An air horn produces sound waves at a constant frequency of 420 Hz. The wavelength of the sound waves is 0.80 m. Calculate the speed of the sound waves. __

Question

An air horn produces sound waves at a constant frequency of 420 Hz.
The wavelength of the sound waves is 0.80 m.
Calculate the speed of the sound waves.
__

An air horn produces sound waves at a constant frequency of 420 Hz. The wavelength of the sound waves is 0.80 m. Calculate the speed of the sound waves. __

expert verifiedVerification of experts

Answer

4.6225 Voting
avatar
AustinProfessional · Tutor for 6 years

Answer

To solve this problem, we'll use the formula for wave speed, which is given by \(v = f \lambda\), where:- \(v\) is the speed of the wave,- \(f\) is the frequency of the wave,- \(\lambda\) is the wavelength of the wave.Given that the frequency (\(f\)) of the sound waves produced by the air horn is \(420 \mathrm{~Hz}\) and the wavelength (\(\lambda\)) of these sound waves is \(0.80 \mathrm{~m}\), we can calculate the speed of the sound waves as follows:\[v = f \lambda = 420 \mathrm{~Hz} \times 0.80 \mathrm{~m} = 336 \mathrm{~m/s}\]Therefore, the speed of the sound waves produced by the air horn is \(336 \mathrm{~m/s}\).**Answer:** The speed of the sound waves is \(336 \mathrm{~m/s}\).
Click to rate:

Hot Questions

More x