Home
/
Physics
/
8.- A train is travelling at 50ms^-1 when the driver applies the brakes and gives the train a constant deceleration of magnitude 0.50ms^-2 for 100 s. Describe what happens to the train Calculate the distance travelled by the train in 100 s.

Question

8.- A train is travelling at 50ms^-1
when the driver applies the brakes and gives the train a constant deceleration of
magnitude 0.50ms^-2
for 100 s. Describe what happens to the train Calculate the distance travelled by the train in 100 s.

8.- A train is travelling at 50ms^-1 when the driver applies the brakes and gives the train a constant deceleration of magnitude 0.50ms^-2 for 100 s. Describe what happens to the train Calculate the distance travelled by the train in 100 s.

expert verifiedVerification of experts

Answer

4.3254 Voting
avatar
NorrisExpert · Tutor for 3 years

Answer

### The distance travelled by the train in 100 s is \( 4750 \, \text{m} \).<br /><br />## Detailed Calculation:<br />1. Initial velocity \( u = 50 \, \text{m/s} \)<br />2. Deceleration \( a = -0.50 \, \text{m/s}^2 \)<br />3. Time \( t = 100 \, \text{s} \)<br />4. Distance \( s = ut + \frac{1}{2}at^2 \)<br /><br />\[<br />s = (50 \, \text{m/s} \times 100 \, \text{s}) + \frac{1}{2}(-0.50 \, \text{m/s}^2 \times (100 \, \text{s})^2)<br />\]<br /><br />\[<br />s = 5000 \, \text{m} + \frac{1}{2}(-0.50 \, \text{m/s}^2 \times 10000 \, \text{s}^2)<br />\]<br /><br />\[<br />s = 5000 \, \text{m} - 250 \, \text{m}<br />\]<br /><br />\[<br />s = 4750 \, \text{m}<br />\]

Explain

## Step 1: Identify initial conditions<br />### Initial velocity \( u = 50 \, \text{m/s} \), deceleration \( a = -0.50 \, \text{m/s}^2 \), and time \( t = 100 \, \text{s} \).<br /><br />## Step 2: Apply the kinematic equation for distance<br />### Use the equation \( s = ut + \frac{1}{2}at^2 \) to calculate the distance travelled.
Click to rate:

Hot Questions

More x